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Automated mound detection using lidar and object-based image analysis in
Beaufort County, South Carolina
Dylan S. Davis , Matthew C. Sanger and Carl P. Lipo

Department of Anthropology, Binghamton University, Binghamton, NY, USA

ABSTRACT
The study of precontact anthropogenic mounded features—earthen mounds, shell heaps, and shell
rings—in the American Southeast is stymied by the spotty distribution of systematic surveys across
the region. Many extant, yet unidentified, archaeological mound features continue to evade
detection due to the heavily forested canopies that occupy large areas of the region, making
pedestrian surveys difficult and preventing aerial observation. Object-based image analysis
(OBIA) is a tool for analyzing light and radar (lidar) data and offers an inexpensive opportunity to
address this challenge. Using publicly available lidar data from Beaufort County, South Carolina,
and an OBIA approach that incorporates morphometric classification and statistical template
matching, we systematically identify over 160 previously undetected mound features. This result
improves our overall knowledge of settlement patterns by providing systematic knowledge
about past landscapes.
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The study of topographically distinct anthropogenic
features—shell rings, middens, shell heaps, and earthen
mounds—has been a primary focus of Southeastern
archaeology since its inception (e.g., Anderson 2004;
Claflin 1931; Crusoe and DePratter 1976; Marquardt
2010; Moore 1894a, 1894b; Putnam 1875; Squier and
Davis 1848; Swallow 1858; Trinkley 1985). The
shape, configuration, and distribution of these distinc-
tive cultural features are routinely used as the basis for
studies of demographic change, environmental altera-
tion, social organization, and site formation in the
Americas (Brennan 1977; Carr and Sears 1985; Claas-
sen 1986; Crusoe and DePratter 1976; Lightfoot and
Cerrato 1989; Peacock et al. 2005; Reitz 1988; Russo
2004; Trinkley 1985). Yet, while mounds are key com-
ponents to our understanding of the archaeological
past, the lack of systematic survey of large areas hin-
ders our knowledge of their numbers and spatial pat-
terns. In particular, wherever vegetation is dense—as
is common across much of the American Southeast—
we have an inconsistent and partial knowledge of
these archaeological features.

Today, substantial effort is placed on archaeological
investigations that utilize noninvasive and nondestruc-
tive remote sensing techniques. These approaches offer
opportunities to expand our ability to incorporate sys-
tematic methods to archaeological surveying across

large areas (e.g., Custer et al. 1986; De Laet et al. 2007;
Doneus et al. 2014; Eskew 2008; Freeland et al. 2016;
Kirk et al. 2016; Krasinski et al. 2016; Kvamme 2013;
Lasaponara et al. 2014; Riley 2009; Schneider et al.
2015; Thompson et al. 2011; Traviglia and Torsello
2017; Trier et al. 2015; Van Ess et al. 2006). These
approaches utilize sensors, such as cameras on aerial
platforms, to acquire landscape level information
about the archaeological record. These sensors
measure visible light or other ranges of electromag-
netic spectra. While using aerial sensors in archaeology
is certainly not new (e.g., Capper 1907; Engelbach
1929; Lindbergh 1929a, 1929b), the use of photos has
largely been rooted in manual analysis where the ana-
lyst must visually seek out features of interest. This
approach, while productive, limits the ability of remote
sensing to be useful in large areas. Additionally, it
leads to the inconsistent evaluation of materials,
makes repeated evaluation costly, and restricts the
approach to imagery easily evaluated in an intuitive
fashion (e.g., visible light photography). One promis-
ing alternative to the manual evaluation of remote sen-
sing data for detecting features of interest is the use of
object-based image analysis (OBIA) (Blaschke 2010;
Freeland et al. 2016). While growing in popularity
across the natural sciences (e.g., Freeland et al. 2016;
Magnini et al. 2017; Riley 2009; Schneider et al. 2015;
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Trier et al. 2015), remote sensing applications have
remained largely unexplored in Southeastern archaeology.

The potential for using OBIA to explore remote sen-
sing data is particularly great for the identification and
location of two forms of topographic anomalies with pre-
contact origins: earthen constructions (i.e., mounds) and
shell constructions (i.e., mounds and rings). The archae-
ological record of the American Southeast once had
thousands of these mound features, and their study pro-
vides much of the basis of our knowledge about the pre-
history of the region. Unfortunately, urban development
over the last 50 years has led to the widespread destruc-
tion of many shell rings and earthen mounds (Stalter
et al. 1999:864).

In Beaufort County, South Carolina, for example, less
than 5% of the surface has been well surveyed according
to the state archaeological site files. Much of the area is
under dense vegetation, making systematic surface sur-
vey difficult, if not impossible. At the same time, the
rate of land development for golf courses and residential
complexes has increased substantially over the last 30
years, along with a doubling of Beaufort’s population
(US Census 2010). Sea level projections estimate that
up to 30,000 acres of dry land in the Beaufort County
area will be submerged by 2040, including nearly total
inundation of many coastal islands (National Oceanic
and Atmospheric Administration [NOAA] 2015). As
the loss of the archaeological record continues, it is
urgent that we implement efforts to systematically inves-
tigate the remaining landscape, and to do so with the
greatest detail, coverage, and the lowest cost possible.
Consequently, remote sensing innovations have tremen-
dous potential to address this challenge. In this paper, we
explore an approach to implement a systematic remote
sensing method to identify artificial mounded features
using Beaufort County, South Carolina, as a case study
(Figure 1).

Mounds and their challenges

Identifying topographic features such as precontact
anthropogenic mounds and rings is complicated by
their morphological diversity in terms of outline,
profile, and size (see Russo 2006; also see Riley 2009);
these can be circular, oval, rectangular, or have irregular
and effigy outlines. Even within a single set of features,
such as rings, there can be variation. Within South Car-
olina and Georgia, for example, features identified as
“shell rings” have circular or “C-shaped” outlines,
whereas in Florida, shell rings are often “U-shaped”
and far more amorphous (Russo 2006:24).

Mounded features have a variety of two-dimensional
elevation profiles ranging from rectangular to triangular

to trapezoidal or, in the case of rings, bimodal. Addition-
ally, size also varies: shell rings in South Carolina and
Georgia are substantially smaller than those in Florida.
If one is searching for rings in Florida, any automatic
detection algorithm must account for objects that can
occupy spaces of 250 m2 or greater, whereas in South
Carolina, these features are unlikely to exceed 150 m2

(see Russo 2006).
Fortunately, much of the variability in mound mor-

phology is stylistic (sensu Dunnell 1978) and thus,
regionally specific. Therefore, algorithms designed to
detect these features can be trained using regionally
specific information that examines the number of poten-
tial dimensions of variability. Using regional samples to
train algorithms provides a statistical basis for defining
parameters. It is important to note, however, that par-
ameters are contingent on sampling; to be useful in
new areas, algorithms must be trained to set appropriate
parameters for those study regions.

One additional challenge for identifying mounds and
shell rings comes from the fact that anthropogenic topo-
graphic features resembling earthworks may in fact be
relatively recent phenomena. Among such examples
are remnants of levee constructions, modern construc-
tion projects, and golf courses. Golf courses, in particu-
lar, often have shape and topographic characteristics
that closely resemble mounds. Minimizing false positives
caused by modern land disturbance requires additional
information to be utilized, such as surrounding land
use or ecological context. Ultimately, isolating features
that are recent in origin often requires subsurface
sampling or comparisons with historic data.

Lidar

One excellent source for topographic information on the
scale of landscapes come from light and radar (lidar)
instruments.1 Lidar data are produced using an active
remote sensing system that emits electromagnetic energy
in the form of light and records the return times of these
pulses to calculate distance. By measuring the time-of-
flight of many different light pulses simultaneously,
lidar data are unique in their ability to reflect ground sur-
faces, even in densely vegetated areas (Jensen 2007).

The recent set of lidar-based studies to explore the
archaeological record, including the recent discovery of
several hundred new Mayan archaeological sites in Gua-
temala, provide excellent examples for how lidar can
reveal previously hidden landscapes (Clynes 2018; Ino-
mata et al. 2018; see also Chase et al. 2014; Evans et al.
2013; Johnson and Ouimet 2018; Weishampel et al.
2011; Witharana et al. 2018). Within the Southeast,
lidar has primarily been used to produce high-resolution
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maps of known mound sites (e.g., Thompson et al. 2016;
Wood and Pluckhahn 2017) but has not been utilized for
prospection of new archaeological deposits. In the con-
text of the mounds and rings of the Southeast, lidar is
particularly significant, as these features are often now
covered by dense forests, making their detection difficult
with traditional pedestrian surveys (e.g., Nance 1983;
Schiffer et al. 1978) or impossible with aerial
photography.

Lidar data are represented in three dimensions as
“point clouds” in which each measurement has a spatial

coordinate in three-dimensional space. The most com-
mon files for storing lidar points are LAS format (or
LAZ for compressed versions). LAS files store collections
of lidar points in a binary format which provides efficient
storage of large amounts of lidar data (Samberg 2007).
LAS files include data on the geographic position for
each mapped point plus information about collection
methods, minimum and maximum values, and classifi-
cation values. Often the raw LAS files are converted
into Digital Elevation Models (DEMs) in which the
raw data are processed and interpolated into a regular

Figure 1. The study area of Beaufort County, South Carolina.
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grid of elevation points. The use of DEMs for analysis
typically reduces the detail that would be available in
the raw lidar data but also ensures regular topographic
coverage for regions of interest. For our analyses, we
used DEM files generated by NOAA (2013) from the
raw LAS files. The DEMs are interpolations of “bare
ground” lidar returns from the original data using near-
est neighbor and inverse distance weighting (IDW)
algorithms to create elevation values every 1.2 m. We
conducted all subsequent analyses using our algorithm
for mound detection on this raster dataset.

For archaeological purposes, lidar data are usually
filtered to limit analysis to those points representing
bare ground elevations. In areas with obscured topogra-
phies, such as forests or vegetated landscapes, however,
not all light pulses will penetrate to the ground surface.
Isolating the bare ground data requires selecting those
points that come from the pulses of light that are the
last to return to the sensor as opposed to earlier returned
pulses that are reflected off of intervening vegetation.
The penetration of lidar signals through vegetation can
vary and is dependent upon the power of the lidar trans-
mitter, the wavelength of light used in the pulse, the
scanning angle of the sensor, the density of the veg-
etation, and the type of vegetative cover present in an
area (Clark et al. 2004; Crow et al. 2007). In areas for
which lidar data are missing due to heavy vegetation,
interpolation algorithms must be used to estimate the
values of locations that lack data (Li and Heap 2014).

Given any particular lidar dataset, one must devise
algorithms that can isolate spatial patterns of the topo-
graphy of interest. These algorithms search through the
data and identify matches of points that meet criteria
on overall shape, size, local relief, and degree of sym-
metry. The challenge to the archaeologist is to find the
most effective set of criteria that can best identify features
of interest with the fewest false positives and false nega-
tives. Often it is useful to include data from other sources
including vegetation, distance to other features, land-use
classification, and so on.

Lidar data have a number of limitations for the detec-
tion of cultural features. The spacing of ground sampling
generated through the process of lidar scanning is a
major factor in the quality of the data for use in identify-
ing features. If lidar data are too sparse with point spa-
cings that are too far apart, the dataset will have a low
spatial resolution and thus may not be adequate for
recognizing distinct topographic features, especially
those that are small (Johnson and Ouimet 2014). The
coverage of lidar over surfaces is also impacted by the
degree to which the emitted light was able to penetrate
vegetation. In densely forested areas, for example, the
intensity of survey must be sufficient to ensure adequate

returns from beneath the canopy (Bater and Coops
2009). The utility of lidar data given the degree of cover-
age also depends on the complexity of the terrain: the
more complexity that one wishes to explore, the more
coverage is required. In the same way, features that
have low topographic profiles will require a greater
degree of coverage and increased precision in the spatial
positions. Finally, the utility of data will also be impacted
by the raw data that are resampled to produce DEMs
(Bater and Coops 2009).

Analytic approaches to remote sensing data

There are two primary means to analyze remote sensing
data: pixel-based and object-based methods (Sevara et al.
2016). Pixel-based approaches rely on spectral values
encoded in raster data. Using a library of known values
associated with targets of interest, it is possible to divide
raster images into a series of classes that represent those
targets. In contrast, OBIA methods identify features
using a number of morphological characteristics, includ-
ing the spectral difference within image objects, object
shape, and neighborhood analysis (Blaschke 2010:3).
By incorporating multiple morphological parameters,
OBIA is well suited for identifying spatially discrete fea-
tures that are small, spectrally diverse, and/or structu-
rally similar. In the case of mound detection—where
features vary primarily in terms of topographic structure
(e.g., shape, circularity, and elevation profiles; Larsen
et al. 2017)—lidar data analyzed through OBIA shows
great promise.

More specifically, mound detection algorithms can
take advantage of multiresolution segmentation and
template-matching (Cerrillo-Cuenca 2017; Magnini
et al. 2017; Schneider et al. 2015; Trier et al. 2015). Seg-
mentation involves the splitting of an image into individ-
ual components based on brightness thresholds,
elevation profiles, shape, and texture (Haralick et al.
1973; Mao and Jain 1992). The process isolates individ-
ual pixels and then systematically expands sets of pixels
to larger units. For each step, the algorithm segments the
units based on differences in texture, color, and shape,
which results in the division of an image into represen-
tations of surface features. For example, mounded fea-
tures display sudden changes in topography which are
divided in the segmentation process. Circular features
on the ground are represented by circular image objects
of the same shape and size of the mound on the ground
(e.g., Freeland et al. 2016; Jahjah et al. 2007; Magnini
et al. 2017; Sevara et al. 2016; Van Ess et al. 2006). Multi-
resolution segmentation is a method that uses iteration
to combine attributes about texture, shape, compactness,
and color into the segmentation procedure, thereby
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increasing its accuracy compared to other image seg-
mentation methods (Burt et al. 1981; Mao and Jain
1992; Silberberg et al. 1980).

Template-matching is an additional OBIA approach
for isolating features of interest. Template-matching
involves iteratively searching images using a constructed
framework and evaluating statistical similarity (Trier
et al. 2008, 2015; Trier and Pilø 2012; Trier and Zortea
2012). However, the approach can produce significant
false positives, as the templates simply produce portions
of the image that are most similar to the specified mor-
phology of the template. For mounds, false positives
often occur as recent cultural features caused by con-
struction along roadsides, stream banks, dams, golf
courses, residual buildings, and farming (Riley
2009:82). To minimize false positives, one can use
land-use maps and roadway shapefiles to filter out fea-
tures that are best explained as the result of recent
activity unrelated to prehistory.

Materials and methods

Beaufort County, South Carolina, contains a large num-
ber of recognized archaeological sites, a significant num-
ber of which are earthen or shell mounds (Frierson 2002;
Stephenson 1971). Shell rings are the earliest unambigu-
ous evidence of sedentary or near-sedentary occupations
of the coastal portions of the county (Russo 2006; Trink-
ley 1980). These deposits offer information about the
subsistence and settlement patterns of Archaic period
hunter-gatherer groups living along the coast. Later
Woodland period deposits include earthen mounds
(Trinkley 1989), a form that becomes increasingly com-
mon over time, particularly during the later Mississip-
pian period (Anderson 1989).

Much of Beaufort County consists of forests and
heavily vegetated marshland. These conditions make tra-
ditional pedestrian surveys (e.g., Michie 1980) difficult.
Thus, much of our knowledge about the archaeological
record is limited to portions where land has been cleared
for development or for which pedestrian access is rela-
tively easy. Consequently, our knowledge of settlement
patterns is limited to more inland regions. Fortunately,
in 2008 and 2009, the National Oceanic and Atmos-
pheric Administration generated lidar data of many of
the counties along the coast in South Carolina. While
generated to provide information about coastal flooding,
these datasets offer archaeologists a means of studying
these landscapes that are otherwise hidden by dense
vegetation.

Currently available NOAA (2017) data are DEMs
with a spatial resolution of 1.2 m. These DEMs are
derived from the original raw lidar data using nearest

neighbor and IDW interpolation algorithms. These
data offer topographic elevation values for every 1.2 m,
a resolution that is generally sufficient for identifying
mound-scale archaeological features on the order of
tens of meters (see Beck et al. 2007).2 As such, a majority
of known mounded features (including shell rings) in
South Carolina are large enough to be identified at this
resolution. The data, however, are unlikely to be able
to detect small mounds that are just a couple of meters
in diameter. Thus, the smallest mounds will be systema-
tically missing from the results of this study. In addition
to the horizontal spatial resolution, the vertical precision
of the lidar data is 15 cm, meaning that for a mound to
be detectable it must rise at least 15 cm from the ground
surface.

One issue that faces the analyst is excluding cultural
features with discrete topographic expressions that are
not part of the archaeological record. Contemporary fea-
tures related to recent development (e.g., golf courses,
housing developments, roadways, construction piles)
often have shapes that are similar to prehistoric mounds.
In order to minimize false positives from these features,
we used United States Geological Survey (USGS) land-
use maps and road maps from the South Carolina
Department of Transportation. These maps provided
us examples of features (n = 393) that we used to create
negative templates for topographically distinct non-
mound features (e.g., roadways, waterbodies, linear fea-
tures, and building imprints).

Pre-processing steps

Using DEM data downloaded from NOAA, we created
four different rasters that highlight topography in differ-
ent ways: slope, maximum focal statistics, red-relief
image map (RRIM), and range focal statistics. Each of
these rasters became the source information used for
our analytic techniques of feature extraction.

Slope
Slope rasters highlight elevation changes on a landscape
(Figure 2) and emphasize sinks and rises on ground sur-
faces such as mounds (Larsen et al. 2017; Podobnikar
2012; Prufer et al. 2015; Riley 2009; Thompson and
Prufer 2015).

Maximum focal statistics
Maximum focal statistic rasters are calculated by evaluat-
ing each data point and conducting a nearest neighbor
analysis of elevation values where the maximum
elevations are identified over a moving window (Podob-
nikar 2012). The produced raster exaggerates
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topographic features in the landscape and allows for
smaller objects to be seen more easily (Figure 2).

Hillshade
Hillshade rasters are a type of shaded-relief map that
highlights elevation changes in a landscape (Figure 2).
One of the drawbacks to this raster type is that the source
of the light in the model causes distortion that can
obscure certain landscape features (Devereux et al.
2008). For this reason, we also use a shade-free relief
map known as a RRIM.

RRIM
Red-relief image mapping produces rasters that are
based on the concept of topographic openness (Chiba
et al. 2008; Yokoyama et al. 2002). Using System for
Automated Geoscientific Analyses or SAGA (Conrad
et al. 2015), an open-source GIS platform, we calculated
topographic openness. For our DEM data, we calculated
an “openness parameter” (I) for each point following
Equation (1) (Chiba et al. 2008:1073).

I = Op − On

2
(1)

In Equation (1), Op is an assessment of positive
openness—which calculates topographic concavity—
and On is an assessment of negative openness—which
calculates topographic convexity. RRIM is created by
overlapping I with a slope gradient in ArcGIS. We
then used the RRIM values to create a colored map
that shows slope in a red gradient and I as a white-
to-black gradient. RRIM conversions of raw data high-
light relatively slight landscape features in lidar data
regardless of viewing angle (Ichita et al. 2016; Inomata
et al. 2017).

Range focal statistics
Rasters constructed from range focal statistics show over-
all elevation changes in a DEM within a specific neighbor-
hood. Because mounds are characterized by sudden
changes in elevation relative to the local topography,
range focal statistics can indicate locations with steep
changes that might have mound features.

An algorithm for topographic feature
identification

Our algorithm for identifying mounds follows the pro-
cess illustrated in Figure 3. We conducted our

Figure 2. Comparison map of DEM processing approaches: (a) DEM; (b) maximum focal statistics; (c) slope; (d) RRIM; (e) hillshade. The
focal statistic raster emphasizes the outline of the shell ring when compared to the regular DEM. Slope clearly reveals the border of ring
and mound structures present on the landscape. RRIM provides a clearer and less distorted view of topographic changes than hillshade
and picks up on smaller features in addition to the larger shell ring present in the image.
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template-matching procedure using eCognition (Trim-
ble 2016). To account for morphological variability in
mound shape, we created 15 templates using a series of
29 mound features (Figure 4), of which 6 are known
archaeological mounds and the remainder were manu-
ally identified in lidar data (Lipo et al. 2018). Our use
of 15 templates to identify mounded features enables
us to assess the degree to which our template choice
influences the features that are identified. The product
of the template-matching consists of two correlation-
coefficient maps that represent the fit to our positive
and negative templates. These provide statistical prob-
abilities on a scale from −1 to 1 (where −1 is extremely
unlikely and 1 is a definitive match) of mound locations
for the study area.

We also conducted multiresolution segmentations of
each raster image using area and circularity as classifica-
tory parameters. In this process, we assess each of the
areas matching the templates by their sizes and shapes

(Freeland et al. 2016) as well as asymmetry and compact-
ness. Asymmetry characterization helps to eliminate
natural phenomena while compactness characterization
tends to be associated with artificial rather than natural
features (Kvamme 2013:55).

We minimized false positives from our list of ident-
ified features through a number of steps in ArcGIS
(ESRI 2017; Table 1). First, we used the elevation range
raster to identify only those features that exhibit a total
positive elevation difference of greater than or equal to
0.5 m but less than 5.0 m. This range is consistent with
most mounds and rings known in the Beaufort County
area (see Russo 2006), but it excludes all features that
are topographically less than 0.5 m in relative elevation.
Thus, mounds that have been flattened, eroded, bull-
dozed, or which have low relief will be systematically
missing from our results. While the vertical resolution
of the raw lidar data (15 cm) suggests that lower profile
features can potentially be identified, the inclusion of

Figure 3. The feature identification algorithm processing steps.
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small elevation differences results in an excessive number
of false positives. Small differences due to natural pro-
cesses—such as levee banks, tree fall, and animal bur-
rows—would potentially appear as features with less
than 0.5 m of elevation difference. As such, we decided
to limit our search to those features we were more

certain that we could identify as prehistoric mounds in
this area.

Second, we used a land-use map to isolate mound
features that were located on or within 5 m of land
classified as developed or disturbed by the USGS.
These locations are often associated with false positive
results due to their association with recent activity
(Riley 2009). For the same reason, we excluded all
results that fell within 10 m of roadways and 20 m of
major highways. Third, we removed all features with
topographic profiles that have slopes less than five
degrees and greater than 50 degrees. We chose this
range based on our ground surveys of 22 mound fea-
tures in the study region (also see Wood and Johnson
1978). Fourth, we used the template-matching process
to reduce our results to the most statistically viable: we
excluded those results with a 75% likelihood of
identification for negative templates. Fifth, we created

Figure 4. Locations of all sample features used in the positive template creation process.

Table 1. Classification parameters used in multiresolution
segmentation.
Parameter Threshold

Area 0–120 pixels (0–150 m2)
Circularity ≥0.6
Asymmetry 0–0.3
Compactness ≥1.0
Notes: Parameters are based on the ranges known from mounds previously
identified in the Beaufort County study area. Circularity is measured on a
scale from 0 to 1 with 1 being a perfect circle. Asymmetry and compactness
are also unitless ratios, with the higher the number representing greater
levels of asymmetry or compactness.

30 D. S. DAVIS ET AL.



a new raster by subtracting the negative correlation
coefficient from the positive correlation coefficient.
We rejected results that fell in areas of this raster
with negative values. Sixth, we used the RRIM raster

to visually inspect the remaining objects and remove
those that could be identified as historic or recent.

Results

Our initial identification process produced 7,115 poten-
tial features. After inspecting these results using the steps
above, we obtained 186 results that are likely to represent
cultural mound features, of which 15 appear the most
promising (Table 2). We chose the features we deemed

Table 2. Manual processing result likelihoods.
Likelihood Mound Ring Total

Low 55 21 76
Medium 64 31 95
High 9 6 15
Total 128 58 186

Figure 5. Locations of surveyed sites: (a) all sites visited during ground truth survey; (b) newly identified shell ring; (c) newly identified
earthen mound. The locations of (b) and (c) are indicated in map (a).
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to be the “most likely” to be archaeological mounds
based on the visual inspection of each result using a com-
bination of the DEM, slope raster, and RRIM, as these
three datasets provide the necessary elevation infor-
mation and visualization capabilities to view identified
features. Paying particular attention to the features’
immediate surroundings (i.e., are they located in a highly
developed or undeveloped area?), elevation profile, size,
and shape, the 15 high-likelihood features exhibited
elevation profiles and morphological properties consist-
ent with known mounds and were located in entirely
undeveloped regions. The medium- and low-likelihood
features exhibited morphological characteristics that
were noticeably different than known mounds and/or
had relative locations that contained greater levels of
modern development and disturbance.

In October 2017, we conducted a ground survey to
assess a sample of five identified features (representing
a 33% sample of high-likelihood objects; Figure 5).
This number represents features that were accessible
on public land and without the use of a boat.

Three of the five features that we evaluated in our
ground evaluation are mounds that were previously
identified (see Supplemental Table 1 for all site numbers
associated with identified features). Two of the features,
however, are new discoveries (not yet recorded as
archaeological sites). These two new mound features
have evaded detection despite decades of traditional sur-
vey (e.g., Michie 1980; Russo 2006; Russo and Heide
2001; Stalter et al. 1999).

The first of these is a precontact shell ring with a ∼15-
m-wide plaza and a ∼1.5-m-high arc (Figure 5). The

Figure 6. Geographic locations of all 186 features identified by our algorithm.
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second newly identified site is a precontact mound that
rises approximately 2 m from the surrounding area
and shows evidence of previous looting (Figure 5).

While the ultimate determination of our method’s
efficacy requires a larger sample size and further ground
survey, our results are promising. Many of the 186
identified sites in Beaufort County are previously unrec-
orded mounds, and our future work will focus on doc-
umenting each of these identified locations (Figure 6).
Only 20 of the features identified here appear in the
South Carolina Archaeological Site Files, indicating
that the majority of topographic anomalies identified
here are not recorded as archaeological sites (see Sup-
plemental Table 1). As such, our method has the poten-
tial to unveil over 160 new archaeological sites in the
Beaufort County area.

Conclusions

Overall, our study demonstrates how semi-automatic
OBIA using lidar data can provide a significant source
of information about precontact landscapes in heavily
vegetated areas. As Nance (1983) points out, the use of
traditional pedestrian survey approaches in heavily vege-
tated areas is problematic, and in many instances, the
results of such surveys are inadequate (also see Schiffer
et al. 1978). Lidar offers a cost-effective means to econ-
omically identify features in areas that would otherwise
be expensive to study.

While successful, our method excludes potential
mounds that have been plowed or otherwise disturbed
by modern or natural phenomena. As such, mounds and
rings that are potentially in the most need of active protec-
tion—namely, those that are being eroded, leveled by
development, or otherwise reduced in size—are less likely
to be identified using the specific parameters implemented
here. New datasets with increased vertical and horizontal
spatial resolution plus the inclusion of additional par-
ameter potentially offer a means of identifying these smal-
ler—and often overlooked—archaeological deposits.

Our algorithm also relies partially on a comprehensive
template that contains records of various known mound
morphologies. As such, if a mound feature varies too far
from the mounds in our template they are also unlikely
to be identified. This shortcoming is resolvable by
ground testing our results and continuing to apply our
algorithm to other locations. As we confirm more fea-
tures, they can be added to our template, making it
more robust and more accurate.

Despite these limitations, our algorithm enabled us to
identify topographic features for an entire county of
2,481 km2 in the span of one week. This same venture
in terms of traditional pedestrian survey would be

measured in years (see Nance 1983). Importantly, this
method is adaptable to other locations. As we gathered
results from our pedestrian evaluations, we were able to
update our templates to include newly discovered features
and to add false positives to our negative templates. Our
preliminary examination of data from Charleston County,
South Carolina, produced about 1,000 potential features.

The use of OBIA offers promise in identifying pre-
viously undocumented archaeological features. This
knowledge will help more fully document Native Amer-
ican settlement patterns and land use prior to European
contact. With the discovery of a new potential shell ring,
the roughly 50 currently known shell rings in the Amer-
ican Southeast (Russo 2006:40) are likely to represent
only a sample of extant features. Through the use of
remote sensing data and OBIA approaches we can be
more confident about our knowledge of these important
classes of mound features and can better contribute to
the protection of these important deposits.

Notes

1. Contrary to common thought, lidar is not an acronym
for “light detection and ranging” but is merely a blend
of the terms “light” and “radar” (see Goyer and Watson
1963).

2. Beck and colleagues (2007) conducted tests on satellite
imagery data to assess the visualization capabilities of
different spatial resolutions. Although different from
lidar-derived DEM datasets, the implications of spatial
resolution on the suitability of remote sensing data for
archaeological prospection remain the same: better
spatial resolution allows for the detection of smaller
objects and greater numbers of archaeological deposits.
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